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ABSTRACT

6,13-Bis(alkylthio)pentacenes directed toward organic field-effect transistors (OFETs) were synthesized by the ZnI 2-mediated reaction of trans -
6,13-dihydroxy-6,13-dihydropentacene with alkylthiols, followed by the dehydrogenative aromatization of the resulting trans -6,13-bis(alkylthio)-
6,13-dihydropentacenes with p-chloranil. The X-ray crystallographic analysis of 6,13-bis(methylthio)pentacene reveals that this compound is
arranged as a result of cofacial π-stacking with S −S and S−π interactions.

Sulfur-containing aromatics are attractive candidates for
organic semiconductors.1,2 Pentacene is another promising
candidate for organic semiconductors, especially organic
field-effect transistors (OFETs).3 It is generally recognized
that the charge-carrier mobility in organic semiconductors
depends onπ-π interactions between molecules. Acenes
such as pentacene, however, tend to be susceptible to
herringbone packing arrangements with minimalπ-stacking,4

although the herringbone-packed pentacene still holds the
highest hole mobility among organic semiconductors.3,5

Realization of a 2-D cofacialπ-stacked packing arrangement
of acenes may achieve greater charge-carrier transport
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efficiency because this molecular ordering would permit good
overlapping of the intermolecularπ-orbitals.3c,d,6 Thus,
control of molecular orientation and arrangement is a very
important subject for OFETs. Several groups have reported
strategies for molecular design to achieve the cofacial
π-stacked packing arrangement of acenes,7-9 in which the
introduction of aryl,7c,dbulky trialkylsilylethynyl,8 or halogen
groups9 into acenes at the appropriate positions changes the
packing structure from a herringbone to a cofacialπ-stacking
motif. Recently, we have demonstrated that S-S interactions
assist a cofacialπ-stacking of 9,10-bis(methylthio)an-
thracene.10,11 Here, we report the synthesis of 6,13-bis-
(alkylthio)pentacenes (3) and the X-ray crystal packing
structure of 6,13-bis(methylthio)pentacene (3a), wherein3a
is arranged by cofacialπ-stacking with S-S and S-π
interactions.

The direct method for the synthesis of3 may be the
reaction of 6,13-dilithiopentacene with a dialkyl disulfide.
However, 6,13-dilithiopentacene cannot be prepared. The
reaction of 6,13-dihydropentacene withn-BuLi in the pres-
ence of TMEDA also did not generate 6,13-dilithio-6,13-
dihydropentacene. We devised a general synthetic route to
3, the key step of which utilizes the ZnI2-mediated reaction
of a benzylic alcohol with alkylthiol to provide a benzylic
alkyl sulfide.12

The reduction of 6,13-pentacenequinone with NaBH4 (4
equiv) in MeOH at room temperature gavetrans-6,13-
dihydroxy-6,13-dihydropentacene (1) in 77% yield.13 The
reaction of1 with alkylthiols or thiophenol (2.2 equiv) in
the presence of ZnI2 (1 equiv) in CH2Cl2 at room temperature
producedtrans-6,13-bis(alkylthio)-6,13-dihydropentacenes
(2a-d) or trans-6,13-bis(phenylthio)-6,13-dihydropentacene

(2e), respectively, in good yields (Scheme 1). These com-
pounds are freely soluble in CHCl3. This reaction is
applicable to a variety of thiols14 and scarcely produces any
of the cis isomer of2. In contrast, reaction of the dimesylate
of 1 with n-C8H17SNa (4 equiv) in CH2Cl2-DMF gave a
mixture of 2c andcis-2c in a 2:1 ratio (total 57% yield).

The final step in the synthesis of 6,13-bis(alkylthio)-
pentacenes (3) is dehydrogenative aromatization of2. The
results are summarized in Table 1. With the goal of

establishing the optimum conditions,2c (R ) n-C8H17) was
chosen as a test substrate (entries 3-5). All reactions were
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Scheme 1. Formation of2 by a ZnI2-Mediated Reaction of1
with Thiols

Table 1. Formation of3 by Dehydrogenative Aromatization of
2 with p-Chloranil

entry R solvent
temp/time
(°C/days)

K2CO3

(10 equiv)
yield of 3

(%)

1 a C6H6 60/3 yes 66
2 b C6H6 60/2 yes 85
3 c CHCl3 40/3 no 40
4 c C6H6 60/2 no 10
5 c C6H6 60/2 yes 68
6 d C6H6 60/2 yes 45
7 e CHCl3 40/2 no 79
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carried out under an argon atmosphere in the dark.p-
Chloranil (2 equiv) was the best dehydrogenative aromati-
zation reagent for2c.15 In entry 3, the reaction of2c with
p-chloranil in CHCl3 at 40 °C for 3 days gave3c in 40%
yield, along with 6,13-dihydro-13,13-bis(n-octylthio)penta-
cen-6-one (4c: 42% yield) as a rearrangement product16 and
the Diels-Alder adduct of3c with p-chloranil at the 6,13-
positions (5c: 16% yield). In benzene at 60°C for 2 days
(entry 4), although overreactions toward4c and 5c were
almost inhibited, the reaction gave3c in 10% yield, together
with cis-2cand recovered2c, whereincis-2chad no reactivity
with respect top-chloranil. The use of K2CO3 as an additive
was effective in inhibiting the formation of undesirablecis-
2c.17 Thus, the best result for the synthesis of3c (entry 5:
68% yield) was obtained under the conditions of2c,
p-chloranil (2 equiv), and K2CO3 (10 equiv) in benzene at
60 °C for 2 days. On the basis of this procedure,2a, 2b,
and2d were transformed into3a (entry 1: R) CH3, 66%
yield), 3b (entry 2: R) n-C5H11, 85% yield), and3d (entry
6: R ) (CH2)2Si(CH3)3, 45% yield), respectively. The
transformation of2e into 3e (entry 7: R) Ph, 79% yield)
was carried out in CHCl3 because hardly any4eand5ewere
produced. Compounds3a and3eare less soluble in CHCl3

and benzene (ca. 0.3 mg/mL at room temperature), whereas
3b-d are freely soluble in these solvents. The UV-vis
spectrum of3c in CH2Cl2 showedλmax ) 617 nm, which is
red-shifted by 39 nm relative toλmax of pentacene.8d,18Under
both air and room light,3a-ein solution gradually decom-
posed to 6,13-pentacenequinone. In contrast to pentacene,18

without lights,3a-ecan be handled and purified under air.19

Single crystals of 6,13-bis(methylthio)pentacene (3a) suit-
able for X-ray diffraction analysis were obtained by allowing
a hot solution of3a in 1,2,4-trichlorobenzene under an argon
atmosphere in the dark to slowly cool to room temperature.

The X-ray crystal packing structure of3a reveals that3a is
arranged by cofacialπ-stacking along thea axis with S-S
and S-πinteractions (Figures 1 and 2).

Figure 1 shows one 2-D network sheet of3a. The
pentacene ring of3a forms the pentacene column through a
slipped-cofacialπ-stacking motif along thea axis,8b,10 with
a face-to-face pentacene-pentacene distance of 3.39 Å. The
pentacene rings in one column are slipped relative to each
other along the long molecular axis by 3.64 Å and along the
short molecular axis by 1.19 Å. This molecular ordering
would permit good overlapping of the intermolecularπ-or-
bitals of the pentacene rings. There is no S-S interaction
(5.128 Å) in the pentacene column. Instead, there are weak
intermolecular S-π interactions between the sulfur atom and
the neighboring pentacene ring in the pentacene column, with
the interatomic distances of S‚‚‚C3′ ) 3.610, S‚‚‚C4′ )
3.611, and S‚‚‚C5′) 3.652 Å.20 The intermolecular S‚‚‚S′
closest distance between the neighboring pentacene columns
in 3a is 4.297 Å (the second closest distance is 4.563 Å).
Although this intermolecular S‚‚‚S′distance is 16% longer(10) Kobayashi, K.; Masu, H.; Shuto, A.; Yamaguchi, K.Chem. Mater.
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Figure 1. 2-D network sheet of3a in the crystal structure: (a)
front and (b) top views.

Figure 2. 3-D packing structure of3a: perspective views looking
down (a) thea axis and (b) thec axis.
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than the van der Waals distance,20 this value is still
sufficiently in the range of van der Waals interactions.11,21

The contact angles of S‚‚‚S′-Cpentaceneand S‚‚‚S′-CMe are
119.88 and 70.92°, respectively. Thus, the pentacene columns
of 3a formed by slipped-cofacialπ-stacking and S-π
interactions are parallel to each other and are linked by the
S-S interactions to self-assemble into a 2-D network sheet
(Figure 1). Figure 2 shows the 3-D packing structure of3a.
The 3a molecules in one 2-D network sheet and in the

neighboring 2-D network sheets are packed relative to each
other with a large tilt angle of 84.4°, in what is called the
γ-motif.4a

In summary, we have developed a general method for the
synthesis of 6,13-bis(alkylthio)pentacenes (3) and demon-
strated that the intermolecular S-S and S-πinteractions
assist the cofacialπ-stacked packing arrangement of the
pentacene rings of3a. It is noted that the introduction of a
small methylthio group into pentacene at the 6,13-positions
changes the packing structure from a herringbone to a
cofacialπ-stacking motif. Studies on the preparation of thin
films and OFET properties of3 are currently in progress.
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